login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX5 binary arrays indicating whether each 2X2 subblock of a larger binary array has lexicographically increasing rows and columns, for some larger (n+1)X6 binary array with rows and columns of the latter in lexicographically nondecreasing order
1

%I #6 Aug 11 2014 22:45:52

%S 16,122,842,5517,34862,210279,1198995,6435794,32506602,154792049,

%T 697073117,2979286263,12129141182,47200560835,176145560948,

%U 632250821238,2188584143256,7323870287583,23744538586763,74727529131117

%N Number of nX5 binary arrays indicating whether each 2X2 subblock of a larger binary array has lexicographically increasing rows and columns, for some larger (n+1)X6 binary array with rows and columns of the latter in lexicographically nondecreasing order

%C Column 5 of A227089

%H R. H. Hardin, <a href="/A227088/b227088.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A227088/a227088.txt">Empirical polynomial of degree 47</a>

%F Empirical polynomial of degree 47 (see link above)

%e Some solutions for n=4

%e ..0..0..1..0..0....0..1..0..1..0....1..0..0..0..0....0..1..1..0..0

%e ..0..1..1..0..0....1..1..0..0..1....0..1..1..0..0....1..1..0..0..1

%e ..1..1..0..0..0....1..0..1..0..0....0..0..0..1..1....0..0..0..0..0

%e ..0..0..0..1..0....0..0..0..1..0....0..0..0..0..0....0..0..0..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jun 30 2013