login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227025
T(n,k)=Number of nXk (0,1,2) arrays of permanents of 2X2 subblocks of some (n+1)X(k+1) binary array with rows and columns of the latter in lexicographically nondecreasing order
6
3, 7, 7, 12, 26, 12, 18, 72, 72, 18, 25, 171, 335, 171, 25, 33, 368, 1366, 1366, 368, 33, 42, 729, 4948, 10050, 4948, 729, 42, 52, 1343, 16115, 65317, 65317, 16115, 1343, 52, 63, 2325, 47659, 375270, 786154, 375270, 47659, 2325, 63, 75, 3819, 129463, 1924848
OFFSET
1,1
COMMENTS
Table starts
..3....7.....12.......18.........25...........33............42............52
..7...26.....72......171........368..........729..........1343..........2325
.12...72....335.....1366.......4948........16115.........47659........129463
.18..171...1366....10050......65317.......375270.......1924848.......8908719
.25..368...4948....65317.....786154......8379285......79224749.....668706345
.33..729..16115...375270....8379285....168973605....3034194621...48518491730
.42.1343..47659..1924848...79224749...3034194621..104606988712.3220901001021
.52.2325.129463..8908719..668706345..48518491730.3220901001021
.63.3819.326522.37616613.5081503151.694140800875
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (5/2)*n
k=2: [polynomial of degree 5] for n>2
k=3: [polynomial of degree 11] for n>6
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..2....0..0..1..1....1..0..0..0....0..0..1..1....0..0..1..0
..0..0..1..1....1..0..1..1....0..0..0..0....0..2..1..1....0..1..0..0
..1..0..1..1....1..0..1..1....1..1..0..1....0..2..2..1....2..0..0..1
..0..0..1..0....2..2..2..1....2..1..0..1....1..2..1..0....2..0..0..1
CROSSREFS
Column 1 is A027379
Sequence in context: A119644 A109386 A024612 * A073881 A137315 A139795
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jun 27 2013
STATUS
approved