login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227017
Floor(M(g(n-1)+1,..,g(n))), where M = harmonic mean and g(n) = n(3n-1)/2 = A000326(n).
5
1, 3, 8, 17, 28, 43, 60, 81, 104, 131, 160, 193, 228, 267, 308, 353, 400, 451, 504, 561, 620, 683, 748, 817, 888, 963, 1040, 1121, 1204, 1291, 1380, 1473, 1568, 1667, 1768, 1873, 1980, 2091, 2204, 2321, 2440, 2563, 2688, 2817, 2948, 3083, 3220, 3361, 3504
OFFSET
1,2
COMMENTS
Also a(n) = floor(G(g(n-1)+1,g(n))), where G = geometric mean. See A227012.
LINKS
FORMULA
a(n) = (1/4)*(1 - (-1)^n + 4*n + 6*n^2) (conjectured).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 1 (conjectured).
G.f.: (-1 - x - 2*x^2 - 3*x^3 + x^4)/((-1 + x)^3 (1 + x)). (conjectured)
EXAMPLE
a(1) = floor(1/(1/1)); a(2) = floor(4/(1/2 + 1/3 + 1/4 + 1/5)) = 3.
MATHEMATICA
z = 100; f[x_] := f[x] = 1/x; g[n_] := g[n] = n (3 n - 1)/2; s[n_] := s[n] = Sum[f[k], {k, g[n - 1] + 1, g[n]}]; v[n_] := v[n] = (g[n] - g[n - 1])/s[n]; Table[g[n], {n, 1, z}]; Table[Floor[v[n]], {n, 1, z}]
CROSSREFS
Cf. A227012.
Sequence in context: A335047 A048230 A294412 * A073433 A059518 A024929
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 01 2013
STATUS
approved