Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 06 2018 10:12:13
%S 1,2,3,9,54,378,16254
%N Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 9 (mod n).
%C Also, numbers n such that B(n)*n == 9 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -9 (mod n). There are no other terms below 10^30. - _Max Alekseyev_, Aug 26 2013
%t Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == Mod[9,#] &]
%o (PARI) is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-9 \\ _Charles R Greathouse IV_, Nov 13 2013
%Y Cf. A031971.
%Y Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), this sequence (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).
%K nonn,more
%O 1,2
%A _José María Grau Ribas_, Jun 24 2013
%E 1,2,9 prepended by _Max Alekseyev_, Aug 26 2013