login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1 and a(n)=prime(n)*lcm(prime(n)-1, a(n-1)) for n > 0.
1

%I #11 Jul 04 2013 03:24:32

%S 1,2,6,60,420,4620,60060,4084080,232792560,5354228880,155272637520,

%T 4813451763120,178097715235440,7302006324653040,313986271960080720,

%U 14757354782123793840,782139803452561073520,46146248403701103337680,2814921152625767303598480

%N a(0)=1 and a(n)=prime(n)*lcm(prime(n)-1, a(n-1)) for n > 0.

%C A226957(a(n)) = n.

%C Is this a subset of A168264? - _Ralf Stephan_, Jul 04 2013

%H Charles R Greathouse IV, <a href="/A226959/b226959.txt">Table of n, a(n) for n = 0..347</a>

%t a[0]=1; a[n_]:= a[n]=Prime[n]*LCM[a[n - 1],Prime[n] -1];

%t Table[a[i], {i, 1, 18}]

%o (PARI) a(n)=if(n,my(v=primes(n),e=vector(n,i,1),f,j); forprime(p=2,v[n], f=factor(p-1); for(i=1,#f~,if(f[i,2]>1,j=primepi(f[i,1]);e[j]=max(e[j],f[i,2])))); prod(i=1,n,v[i]^e[i]),1) \\ _Charles R Greathouse IV_, Jun 28 2013

%Y Cf. A226957, A002110.

%K nonn

%O 0,2

%A _José María Grau Ribas_, Jun 24 2013