login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p^4 + p - 1, p^4 + p^2 - 1, p^4 + p^3 - 1 are also prime.
1

%I #28 Mar 26 2023 09:36:30

%S 2,3,13,43,4909,21283,47417,57301,59951,72647,98713,132623,135841,

%T 149101,153371,285463,343489,355519,360823,375101,396997,405901,

%U 447197,452377,458797,501173,532379,557153,605947,610199,614071,616079,627901,644051,656141,668417

%N Primes p such that p^4 + p - 1, p^4 + p^2 - 1, p^4 + p^3 - 1 are also prime.

%H Peter J. C. Moses, <a href="/A226938/b226938.txt">Table of n, a(n) for n = 1..2000</a>

%F A226770(a^4(n) - 1) = 3.

%t Select[Prime[Range[10000]],And@@PrimeQ[#1+{#2,#2^2,#2^3}]&[#^4-1,#]&] (* _Peter J. C. Moses_, Jul 05 2013 *)

%t Select[Prime[Range[60000]],AllTrue[#^4-1+#^Range[3],PrimeQ]&] (* _Harvey P. Dale_, Mar 26 2023 *)

%Y Cf. A226770, A227129, A227276.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Jul 05 2013

%E More terms from _Peter J. C. Moses_