Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 11 2015 06:20:17
%S 3,9,53,231,5319,3167,1296273,1604979,64370707,22906587,411169704813,
%T 610433321,424312831956207,2146177886409,98731231639051,
%U 12218411169233691,1112291237880234922707,2196818399875253,2619031544578888560315813,16827894135040576041
%N Numerator of n + Sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k), k=0..n).
%H Helmut Prodinger, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p7/0">An identity conjectured by Lacasse via the tree function</a>, Electronic Journal of Combinatorics, 20(3) (2013), #P7. See xi_2(n).
%e 3, 9/2, 53/9, 231/32, 5319/625, 3167/324, 1296273/117649, 1604979/131072, ...
%o (PARI) a(n) = numerator(n + sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k))); \\ _Michel Marcus_, Jun 11 2015
%Y Denominators are in A036505. Cf. A090878, A063170.
%K nonn,frac
%O 1,1
%A _N. J. A. Sloane_, Jul 31 2013