login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226854
a(n) = (-5*B(n+2) + (2*n+9)*B(n+1) + (2*n+1)*B(n))/4, where the B(i) are Bell numbers (A000110).
1
0, 0, 0, 0, 1, 11, 89, 660, 4795, 35067, 261505, 2001608, 15777434, 128270836, 1076208942, 9318227402, 83230080505, 766465520673, 7272362469647, 71040825568988, 713933196773609
OFFSET
0,6
LINKS
B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for averages of set partition statistics, 2013.
MATHEMATICA
Table[(-5 BellB[n+2] + (2 n + 9) BellB[n + 1] + (2 n + 1) BellB[n])/4, {n, 0, 30}] (* Vincenzo Librandi Jul 16 2013 *)
PROG
(PARI) B(n) = if (n<=1, return (1), return (sum(i=0, n-1, binomial(n-1, i)*B(n-1-i))))
a(n) = (-5*B(n+2) + (2*n+9)*B(n+1) + (2*n+1)*B(n))/4
(Magma) [(-5*Bell(n+2)+(2*n+9)*Bell(n+1)+(2*n+1)*Bell(n))/4: n in [0..30]]; // Vincenzo Librandi, Jul 16 2013
CROSSREFS
Sequence in context: A121155 A201117 A081657 * A037580 A155607 A356323
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 19 2013
STATUS
approved