login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Discriminants D of indefinite binary quadratic forms (given in A079896) which allow a solution of the Pell equation x^2 - D*y^2 = -4.
2

%I #25 Jan 18 2021 05:14:31

%S 5,8,13,17,20,29,37,40,41,52,53,61,65,68,73,85,89,97,101,104,109,113,

%T 116,125,137,145,148,149,157,164,173,181,185,193,197,200,212,229,232,

%U 233,241,244,257,260,265,269,277,281,292,293,296,313,317,325,328

%N Discriminants D of indefinite binary quadratic forms (given in A079896) which allow a solution of the Pell equation x^2 - D*y^2 = -4.

%C The discriminants D = a(n) which are not squarefree (not in A226693), that is a(n) = k^2*D', lead to a Pell equation for D'. For example, a(2) = 8 leads to x^2 - 2*(2*y)^2 = -4. This has only improper positive integer solutions like (x, 2*y) = (2, 2), (14, 10), (82, 58), ... coming from the proper positive integer solutions of X^2 - 2*Y^2 = -1, (X, Y) = (1, 1), (7, 5), (41, 29), ...

%C The +4 Pell equation has a solution (in fact infinitely many solutions) for each D from A079896.

%D D. A. Buell, Binary Quadratic Forms, Springer, 1989, Sections 3.2 and 3.3, pp. 31-48.

%D A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, Paragraph 32, pp. 121-126.

%F The sequence lists the increasing D values which are not a square, are 1 (mod 4) or 0 (mod 4) (members of A079896) and allow a solution (in fact infinitely many solutions) of x^2 - D*y^2 = -4.

%e Positive fundamental solutions (proper or improper):

%e n=1, D=5: (1, 1), (11, 5); (4, 2)

%e n=2, D=8: (2, 1)

%e n=3, D=13: (3, 1), (393, 109); (36, 10)

%e n=4, D=17: no proper solution; (8, 2)

%e n=5, D=20: (4, 1)

%e n=6, D=29: (5, 1), (3775, 701); (140, 26)

%e n=7, D=37: no proper solution; (12, 2)

%e n=8, D=40: (6, 1)

%e n=9, D=41: no proper solution; (64, 10)

%e n=10, D=52: (36, 5)

%e n=11, D=53: (7, 1), (18557, 2549); (364, 50)

%e ...

%t solQ[d_] := Mod[d, 4] <= 1 && !IntegerQ[Sqrt[d]] && Reduce[x^2 - d*y^2 == -4, {x, y}, Integers] =!= False; Select[Range[328], solQ ] (* _Jean-François Alcover_, Jul 03 2013 *)

%o (PARI) isA226696(D) = if(D%4<=1&&!issquare(D), for(n=1,oo,if(issquare(D*n^2-4),return(1));if(issquare(D*n^2+4),return(0))), 0) \\ _Jianing Song_, Mar 02 2019

%Y Cf. A079896, A226165, A226693.

%Y A003653 is a subsequence listing the fundamental discriminants in this sequence.

%K nonn

%O 1,1

%A _Wolfdieter Lang_, Jun 21 2013