login
A226586
Odd values of sigma(n) - phi(n) in the order of appearance and with repetition.
1
5, 11, 7, 23, 33, 11, 47, 79, 15, 73, 95, 171, 67, 129, 177, 23, 191, 355, 309, 27, 315, 385, 283, 289, 383, 723, 35, 739, 393, 39, 687, 801, 489, 1089, 711, 767, 47, 1459, 649, 281, 1599, 969, 801, 607, 1431, 1633, 59, 1971, 2581, 63, 1555, 1535, 1153, 1069, 2931, 1605, 927, 1843, 3319, 2121
OFFSET
1,1
COMMENTS
Odd values of A051612(n) sorted along n.
LINKS
FORMULA
sigma(4) - phi(4) = 7 - 2 = 5. Since 5 is the first odd value of sigma(n) - phi(n), it appears first in the list. So a(1) = 5.
MAPLE
select(type, [seq(numtheory:-sigma(n)-numtheory:-phi(n), n=1..2000)], odd); # Robert Israel, Aug 11 2019
MATHEMATICA
Select[Table[DivisorSigma[1, n]-EulerPhi[n], {n, 2000}], OddQ] (* Harvey P. Dale, Sep 27 2013 *)
CROSSREFS
Sequence in context: A226619 A367705 A068419 * A368055 A358613 A329005
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 28 2013
STATUS
approved