%I #21 Dec 31 2014 08:33:33
%S 2,2,8,32,128,2048,55296,31850496
%N Denominators of the series expansion of the ground-state energy of the Hubbard model in the limits of strong coupling and infinite dimensions.
%C a(n) is the denominator of the sum of the weighted contributions from the A198761(n) ways of electron hopping on all of the A198760(n) initial spin-configurations, see eq. A1 in Phys. Rev. B 85, 045105 (2012).
%D Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
%D M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012).
%H E. Kalinowski and W. Gluza, <a href="http://arxiv.org/abs/1106.4938">Evaluation of high-order terms for the Hubbard model in the strong-coupling limit</a>, Phys. Rev. B 85 (4), 045105 (2012), 8 pages.
%H M. Paech, W. Apel, E. Kalinowski and E. Jeckelmann, <a href="http://arxiv.org/abs/1410.6630">Comparison of computer-algebra strong-coupling perturbation theory and dynamical mean-field theory for the Mott-Hubbard insulator in high dimensions</a>, Phys. Rev. B 90 (24), 245147 (2014), 10 pages.
%e -1/2, -1/2, -19/8, -593/32, -23877/128, -4496245/2048, ... = A226584/A226585
%Y Cf. A226584.
%K nonn,frac,more
%O 2,1
%A _Eva Kalinowski_, Jun 12 2013