login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest number of integer-sided squares needed to tile a 3 X n rectangle.
4

%I #32 Jan 25 2024 19:34:53

%S 0,3,3,1,4,4,2,5,5,3,6,6,4,7,7,5,8,8,6,9,9,7,10,10,8,11,11,9,12,12,10,

%T 13,13,11,14,14,12,15,15,13,16,16,14,17,17,15,18,18,16,19,19,17,20,20,

%U 18,21,21,19,22,22,20,23,23,21,24,24,22,25,25,23,26

%N Smallest number of integer-sided squares needed to tile a 3 X n rectangle.

%H Alois P. Heinz, <a href="/A226576/b226576.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).

%F G.f.: (3*x-2*x^3)/(1-x-x^3+x^4).

%F a(n) = 1 + a(n-3) for n>2; a(0)=0, a(1)=a(2)=3.

%F a(n) = (3*n+15+6*cos(2*(n-2)*Pi/3)-8*sqrt(3)*sin(2*(n-2)*Pi/3))/9. - _Wesley Ivan Hurt_, Oct 01 2017

%F a(n) = 3*floor((n+2)/3) - 2*floor(n/3). - _Ridouane Oudra_, Jan 25 2024

%e a(8) = 5:

%e ._._._._._._._._.

%e | | | |

%e | | |___|

%e |_____|_____|_|_| .

%p a:= n-> iquo(n, 3, 'r') +[0, 3, 3][r+1]:

%p seq(a(n), n=0..80);

%t CoefficientList[Series[(3 x - 2 x^3)/(1 - x - x^3 + x^4), {x, 0, 70}], x] (* _Michael De Vlieger_, Oct 01 2017 *)

%o (PARI) concat(0, Vec((3*x-2*x^3)/(1-x-x^3+x^4) + O(x^50))) \\ _Felix Fröhlich_, Oct 02 2017

%Y Cf. row m=3 of A113881, A219158.

%K nonn,easy

%O 0,2

%A _Alois P. Heinz_, Jun 12 2013