login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226507
4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n), where B(i) are the Bell numbers A000110.
2
0, 0, 0, 1, 16, 177, 1726, 15912, 143148, 1279939, 11504326, 104686659, 968808308, 9144180028, 88184565504, 869867691833, 8781919559956, 90765497635245, 960434143555986, 10403548856756708, 115336464546432180, 1308260884070774299, 15177980646442995698, 180036437138753006607, 2182526416321158803528
OFFSET
0,5
LINKS
B. Chern, P. Diaconis, D. M. Kane, and R. C. Rhoades, Closed expressions for averages of set partition statistics, arXiv:1304.4309 [math.CO], 2013.
FORMULA
a(n) ~ n^4 * Bell(n) / LambertW(n)^2 * (1 - 4/LambertW(n) + 4/LambertW(n)^2). - Vaclav Kotesovec, Jul 28 2021
MAPLE
A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i)*A000110(n-1-i), i=0..n-1); fi; end;
f:=n->4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n);
[seq(f(n), n=0..30)];
MATHEMATICA
Table[4 BellB[n+4] - (4 n + 15) BellB[n + 3] + (n^2 + 8 n + 9) BellB[n+2] - (4 n + 3) BellB[n+1] + n BellB[n], {n, 0, 30}] (* Vincenzo Librandi, Jul 16 2013 *)
PROG
(Magma) [4*Bell(n+4)-(4*n+15)*Bell(n+3)+(n^2+8*n+9)*Bell(n+2)-(4*n+3)*Bell(n+1)+n*Bell(n): n in [0..30]]; // Vincenzo Librandi, Jul 16 2013
CROSSREFS
Sequence in context: A007144 A017521 A323856 * A264297 A002399 A255255
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2013
STATUS
approved