%I #10 May 05 2021 18:09:18
%S 0,1,6,4851
%N Triangular numbers representable as m * triangular(m).
%e 6 = 2 * triangular(2).
%e 4851 = 21 * triangular(21).
%t TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; s = Select[Range[0, 10000], TriangularQ[#^2 (# + 1)/2] &]; s^2 (s + 1)/2 (* _T. D. Noe_, Jun 12 2013 *)
%o (Python)
%o def isTriangular(a):
%o sr = 1 << (int.bit_length(int(a)) >> 1)
%o a += a
%o while a < sr*(sr+1): sr>>=1
%o b = sr>>1
%o while b:
%o s = sr+b
%o if a >= s*(s+1): sr = s
%o b>>=1
%o return (a==sr*(sr+1))
%o for n in range(10000):
%o product = n*n*(n+1)//2
%o if isTriangular(product): print(product, end=',')
%Y Cf. A000217.
%K nonn
%O 1,3
%A _Alex Ratushnyak_, Jun 09 2013