login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(13*n - 9)/2.
22

%I #43 Mar 22 2024 08:01:13

%S 0,2,17,45,86,140,207,287,380,486,605,737,882,1040,1211,1395,1592,

%T 1802,2025,2261,2510,2772,3047,3335,3636,3950,4277,4617,4970,5336,

%U 5715,6107,6512,6930,7361,7805,8262,8732,9215,9711,10220,10742,11277,11825,12386,12960

%N a(n) = n*(13*n - 9)/2.

%C Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.

%C Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

%H Bruno Berselli, <a href="/A226488/b226488.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: x*(2+11*x)/(1-x)^3.

%F a(n) + a(-n) = A152742(n).

%F a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Harvey P. Dale_, Jun 19 2013

%F E.g.f.: x*(4 + 13*x)*exp(x)/2. - _G. C. Greubel_, Aug 30 2019

%F a(n) = A000567(n) + A001106(n). - _Michel Marcus_, Aug 31 2019

%p A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # _Wesley Ivan Hurt_, Feb 25 2014

%t Table[n(13n-9)/2, {n, 0, 50}]

%t LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* _Harvey P. Dale_, Jun 19 2013 *)

%t CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* _Vincenzo Librandi_, Aug 18 2013 *)

%o (Magma) [n*(13*n-9)/2: n in [0..50]];

%o (Magma) I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Aug 18 2013

%o (PARI) a(n)=n*(13*n-9)/2 \\ _Charles R Greathouse IV_, Sep 24 2015

%o (Sage) [n*(13*n-9)/2 for n in (0..50)] # _G. C. Greubel_, Aug 30 2019

%o (GAP) List([0..50], n-> n*(13*n-9)/2); # _G. C. Greubel_, Aug 30 2019

%Y Cf. A000567, A001106, A153080 (first differences).

%Y Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

%K nonn,easy

%O 0,2

%A _Bruno Berselli_, Jun 09 2013