login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226457
D(n,2^n), where D is the binary graph metric, as in A226456.
2
1, 1, 4, 2, 5, 8, 9, 5, 8, 11, 12, 15, 16, 17, 18, 12, 15, 18, 19, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 27, 30, 33, 34, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 58, 61, 64, 65
OFFSET
1,3
COMMENTS
See A226456.
LINKS
EXAMPLE
Using Method 1:
D(1,2) = 1 + 2 - 2*1 = 1.
D(2,4) = 2 + 3 - 2*2 = 1
D(3,8) = 2 + 4 - 2*1 = 4
MATHEMATICA
r = 1/2; f[x_] := Floor[r*x]; z = 20; g[x_] := FixedPointList[f, x]; u[x_] := Length[g[x]]; v[x_, y_] := Max[Intersection[g[x], g[y]]]; d[x_, y_] := u[x] + u[y] - 2*Length[g[v[x, y]]]; Table[d[n, n + 1], {n, 1, 100}]
CROSSREFS
Cf. A226246.
Sequence in context: A169850 A371904 A112962 * A349244 A277390 A200608
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jun 08 2013
STATUS
approved