login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} A056789(n)*x^n/n ), where A056789(n) = Sum_{k=1..n} lcm(k,n)/gcd(k,n).
1

%I #19 Oct 28 2024 07:11:39

%S 1,1,2,5,10,23,40,86,159,300,559,1037,1887,3400,6102,10763,19027,

%T 33138,57621,99160,169934,289432,490208,826169,1385272,2312155,

%U 3840729,6354981,10467872,17179510,28081845,45740041,74234336,120074489,193582842,311102311,498434393

%N G.f.: exp( Sum_{n>=1} A056789(n)*x^n/n ), where A056789(n) = Sum_{k=1..n} lcm(k,n)/gcd(k,n).

%H Vaclav Kotesovec, <a href="/A226455/b226455.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (1/(1 - x)) * Product_{k>=2} 1/(1 - x^k)^(phi(k^2)/2), where phi() is the Euler totient function. - _Ilya Gutkovskiy_, May 28 2019

%F a(n) ~ exp(4*sqrt(Pi)*n^(3/4)/(3*5^(1/4)) + 3*zeta(3)/(2*Pi^2)) / (2^(3/2)*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 28 2024

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 23*x^5 + 40*x^6 + 86*x^7 + ...

%e where

%e log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 51*x^5/5 + 48*x^6/6 + 148*x^7/7 + 147*x^8/8 + 253*x^9/9 + 253*x^10/10 + ... + A056789(n)*x^n/n + ...

%t nmax = 50; CoefficientList[Series[1/Sqrt[1-x] * Product[1/(1 - x^k)^(k*EulerPhi[k]/2), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 28 2024 *)

%o (PARI) {A056789(n)=sum(k=1,n,lcm(n,k)/gcd(n,k))}

%o {a(n)=polcoeff(exp(sum(m=1,n+1,A056789(m)*x^m/m)+x*O(x^n)),n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A023896, A056789, A226106.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jun 07 2013