Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 09 2020 09:58:35
%S 1,2,3,6,7,11,12,14,22,23,24,28,31,43,44,46,47,48,56,59,62,67,71,79,
%T 83,86,88,92,94,96,103,107,112,118,124,131,134,139,142,158,166,167,
%U 172,176,179,184,188,191,192,206,211,214,223,224,227,236,239,248,262
%N Numbers k such that rad(phi(k)) = phi(rad(k)).
%C Numbers k such that A080400(k) = A173557(k). - _Amiram Eldar_, Apr 09 2020
%H Charles R Greathouse IV, <a href="/A226384/b226384.txt">Table of n, a(n) for n = 1..10000</a>
%p with(numtheory):
%p rad:= n-> mul(i, i=factorset(n)):
%p a:= proc(n) option remember; local k; for k from 1+a(n-1)
%p while phi(rad(k))<>rad(phi(k)) do od; k
%p end: a(0):=0:
%p seq(a(n), n=1..80); # _Alois P. Heinz_, Jun 07 2013
%t rad[n_] := Product[fa[n][[i, 1]], {i,
%t Length[fa[n]]}]; fa = FactorInteger;
%t Select[Range[500], rad[EulerPhi[#]] == EulerPhi[rad[#]] &]
%o (PARI) is(n)=my(f=factor(n)); lcm(factor(eulerphi(f))[,1])==prod(i=1,#f~, f[i,1]-1) \\ _Charles R Greathouse IV_, Nov 13 2013
%Y Cf. A000010, A007947, A080400, A173557.
%K nonn
%O 1,2
%A _José María Grau Ribas_, Jun 05 2013