login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226305
Numerator of Product_{d|n} b(d)^Moebius(n/d), where b() = A100371().
2
1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5, 4095, 1, 17, 17, 65535, 1, 262143, 17, 65, 1, 4194303, 17, 69905, 1, 4161, 65, 268435455, 1, 1073741823, 257, 1025, 1, 53261, 13, 68719476735, 1, 4097, 257, 1099511627775, 1, 4398046511103, 1025, 3133, 1, 70368744177663, 257, 69810262081, 1, 65537, 4097
OFFSET
1,3
LINKS
N. Bliss, B. Fulan, S. Lovett, and J. Sommars, Strong Divisibility, Cyclotomic Polynomials, and Iterated Polynomials, Amer. Math. Monthly, 120 (2013), 519-536.
EXAMPLE
1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5/3, 4095, 1, 17/3, 17, 65535, 1, 262143, 17/3, 65/3, 1, 4194303, 17/5, 69905, 1, 4161, 65/3, 268435455, 1, 1073741823, 257, 1025/3, 1, 53261/3, 13, ...
MAPLE
f:=proc(a, M) local n, b, d, t1, t2;
b:=[];
for n from 1 to M do
t1:=divisors(n);
t2:=mul(a[d]^mobius(n/d), d in t1);
b:=[op(b), t2];
od;
b;
end;
a:=[seq(2^phi(n)-1, n=1..100)];
f(a, 100);
MATHEMATICA
Table[Numerator[Product[(2^EulerPhi[d] - 1)^MoebiusMu[n/d], {d, Divisors[n]}]], {n, 100}] (* Indranil Ghosh, Apr 14 2017 *)
PROG
(Python)
from sympy import divisors, totient, mobius, prod
def a(n): return prod((2**totient(d) - 1)**mobius(n//d) for d in divisors(n)).numerator()
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Apr 14 2017
CROSSREFS
Sequence in context: A344213 A243545 A094152 * A281759 A280467 A282264
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 07 2013
STATUS
approved