Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Dec 23 2023 08:44:32
%S 0,-1,0,-1,2,1,2,1,4,3,4,3,6,5,6,5,8,7,8,7,10,9,10,9,12,11,12,11,14,
%T 13,14,13,16,15,16,15,18,17,18,17,20,19,20,19,22,21,22,21,24,23,24,23,
%U 26,25,26,25,28,27,28,27,30,29,30,29
%N a(4n) = a(4n+2) = 2*n , a(4n+1) = a(4n+3) = 2*n-1.
%C a(n)=c(n) in A214297(n).
%C In A214297 d(n)=-1,1,1,3,1,3,3,... = mix (-A186422(2n) , A186422(2n+1)).
%C A214297 is the (reduced) numerator of 1/4 - 1/A061038(n).
%C (i.e. (1/4 -(1/0, 1/4, 1, 1/36, 1/16,...)) = -1/0, 0/1, -3/4, 2/9, 3/16,... )
%C 1/0 is a convention.
%C n^2=(a(n+1)+d(n+1))^2 are the denominators.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F a(0) = a(2)=0, a(1)=a(3)=-1, a(4)=2.
%F a(n) = a(n-4) + 2, n > 3.
%F a(n) = a(n-1) + a(n-4) - a(n-5), n > 4.
%F A214297(n) = a(n+1) * d(n+1).
%F G.f.: x*(3*x^3-x^2+x-1) / ((x-1)^2*(x+1)*(x^2+1)). - _Colin Barker_, Sep 22 2013
%t Table[{0, -1} + 2*Floor[n/2], {n, 0, 31}] // Flatten (* _Jean-François Alcover_, Jun 03 2013 *)
%o (PARI) a(n)=n\4*2-n%2 \\ _Charles R Greathouse IV_, Sep 15 2013
%Y Cf. A134967, A162330, A103889, A000290.
%K sign,easy
%O 0,5
%A _Paul Curtz_, Jun 02 2013