login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of the probability of success in sultan's dowry problem with n daughters.
3

%I #18 Nov 14 2018 13:33:48

%S 1,2,2,24,30,180,70,1120,840,8400,630,83160,72072,1009008,1081080,

%T 192192,408408,7351344,2217072,8868288,203693490,71131060,74364290,

%U 4759314560,14872858000,77338861600,72282089880

%N Denominators of the probability of success in sultan's dowry problem with n daughters.

%H Andrew Howroyd, <a href="/A226243/b226243.txt">Table of n, a(n) for n = 1..500</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SultansDowryProblem.html">Sultan's Dowry Problem.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Secretary_problem">Secretary problem</a>.

%e 1, 1/2, 1/2, 11/24, 13/30, 77/180, 29/70, 459/1120, ...

%t G[k_, n_] := G[k, n] = 1/( k + 1) Max[(k + 1)/n, G[k + 1, n]] + k/(k + 1)G[k + 1, n]; G[n_, n_] = 0; Denominator@Table[G[0, n], {n, 1, 20}]

%o (PARI) a(n)={my(g=0); forstep(k=n-1, 0, -1, g = max(1/n, g/(k+1)) + k*g/(k+1)); denominator(g)} \\ _Andrew Howroyd_, Nov 12 2018

%Y Cf. A226242(numerators), A054404.

%K nonn,frac

%O 1,2

%A _José María Grau Ribas_, Jun 01 2013