login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of endomorphisms of the full transformation monoid on the set {1..n}.
2

%I #18 Jun 08 2013 13:12:24

%S 1,7,40,345,3226,38503,529614,8219025,141633028,2677676931,

%T 55021969234,1219667932585,28986449652564,734758590703803,

%U 19777243624646566,563105619051710817,16902630001714260832,533291777845757001523,17638752528002502032130,610137644831701323189321

%N The number of endomorphisms of the full transformation monoid on the set {1..n}.

%H Charles R Greathouse IV, <a href="/A226223/b226223.txt">Table of n, a(n) for n = 1..100</a>

%H B. M. Schein and B. Teclezghi, <a href="http://www.ams.org/journals/proc/1998-126-09/S0002-9939-98-04764-9/S0002-9939-98-04764-9.pdf">Endomorphisms of finite full transformation semigroups</a>, Proc. Amer. Math. Soc., 126 (1998) 2579-2587.

%o (PARI) a(n)=if(n<5,return([1, 7, 40, 345][n]));n!*(sum(m=1,n,m^(n-m)*sum(k=0,(m-1)\2,sum(r=1,m-2*k,r^(m-k-r)/(m-2*k-r)!/r!)/2^k/k!)/(n-m)!)+1) \\ _Charles R Greathouse IV_, May 31 2013

%Y Cf. A000312.

%K nonn

%O 1,2

%A _James Mitchell_, May 31 2013

%E a(10)-a(20) from _Charles R Greathouse IV_, May 31 2013