login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = mu(n)*d(n), where mu(n) = A008683 and d(n) = A000005.
6

%I #42 Jun 22 2024 20:02:13

%S 1,-2,-2,0,-2,4,-2,0,0,4,-2,0,-2,4,4,0,-2,0,-2,0,4,4,-2,0,0,4,0,0,-2,

%T -8,-2,0,4,4,4,0,-2,4,4,0,-2,-8,-2,0,0,4,-2,0,0,0,4,0,-2,0,4,0,4,4,-2,

%U 0,-2,4,0,0,4,-8,-2,0,4,-8,-2,0,-2,4,0,0,4,-8,-2,0,0,4,-2,0,4,4,4,0,-2,0,4,0,4,4,4,0,-2,0,0,0,-2,-8,-2,0,-8

%N a(n) = mu(n)*d(n), where mu(n) = A008683 and d(n) = A000005.

%C The prime numbers are the only solutions to mu(n)*d(n) = -2.

%C Multiplicative with a(p) = -2, a(p^e) = 0, e > 1.

%C The Moebius inverse is A076479, and the Dirichlet inverse A061142. - _R. J. Mathar_, Jun 03 2013

%C Möbius transform of (-1)^omega(n). - _Wesley Ivan Hurt_, Jun 22 2024

%H Antti Karttunen, <a href="/A226177/b226177.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F a(n) = mu(n)*d(n) = A008683(n)*A000005(n).

%F Sum_{n>0} a(n)/n^s = Product_{p prime} (1 - 2p^(-s)). - _Ralf Stephan_, Jul 07 2013

%F a(n) = mu(n) * 2^omega(n) = |mu(n)| * (-2)^omega(n), where omega = A001221. - _Álvar Ibeas_, Dec 30 2018

%F a(n) = Sum_{d|n} (-1)^omega(d) * mu(n/d). - _Wesley Ivan Hurt_, Jun 22 2024

%e a(5) = mu(5)*d(5) = (-1)(2) = -2.

%p with(numtheory); a:=n->mobius(n)*tau(n); seq(a(k),k=1..100);

%t Table[MoebiusMu[n] DivisorSigma[0, n], {n, 105}] (* _Michael De Vlieger_, Jul 23 2017 *)

%o (PARI) A226177(n) = moebius(n)*numdiv(n); \\ _Antti Karttunen_, Jul 23 2017

%o (Scheme) (define (A226177 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) -2 0) (A226177 (A028234 n))))) ;; _Antti Karttunen_, Jul 23 2017

%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X))[n], ", ")); \\ _Vaclav Kotesovec_, Aug 21 2021

%Y Cf. A000005, A000040, A001358, A008683, A074823 (absolute values), A001221.

%K sign,mult

%O 1,2

%A _Wesley Ivan Hurt_, May 29 2013

%E More terms from _Antti Karttunen_, Jul 23 2017

%E Name changed by _David A. Corneth_, Jul 23 2017