Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #22 Dec 20 2021 17:37:37
%S 1301,3989,4931,5387,6803,7451,7703,7753,10303,10657,10723,11971,
%T 12119,12329,12541,12653,12907,12983,13693,13729,13789,14207,14251,
%U 14303,14411,14821,15131,15217,15383,15619,15629,15913,16231,16487,17137,17627,17807,17929
%N Primes p that become composite when any nonzero decimal digit is appended or deleted on the right or left of p.
%C Among the first million primes, 99272 of them are of this type. This sequence was suggested by Carlos Rivera's Puzzle 690 (see link below).
%H T. D. Noe, <a href="/A226144/b226144.txt">Table of n, a(n) for n = 1..10000</a>
%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_690.htm">Puzzle 690 Unreachable Primes</a>
%e 1301 is prime, but the numbers 301, 130, x1301, 1301x are composite for any x in {1,2,3,4,5,6,7,8,9}.
%p with(StringTools):
%p LL:=Explode("123456789"):
%p IsIsolated:=proc(p)
%p global LL;
%p local L,x,q,i,t;
%p L:=Explode(convert(p,string));
%p for x in LL do
%p t:=[x,seq(L[i],i=1..nops(L))];
%p q:=parse(Implode(t));
%p if isprime(q) then return false; fi;
%p t:=[seq(L[i],i=1..nops(L)),x];
%p q:=parse(Implode(t));
%p if isprime(q) then return false; fi;
%p od:
%p t:=[seq(L[i],i=1..nops(L)-1)];
%p if t <> [] then
%p q:=parse(Implode(t));
%p if isprime(q) then return false; fi;
%p fi;
%p t:=[seq(L[i],i=2..nops(L))];
%p if t <> [] then
%p q:=parse(Implode(t));
%p if isprime(q) then return false; fi;
%p fi;
%p return true;
%p end proc:
%p a:=NULL;
%p for i from 1 to 20000 do
%p p:=ithprime(i);
%p if IsIsolated(p) then a:=a,p; fi;
%p od:
%p a; # _W. Edwin Clark_, May 28 2013
%t noPrimesQ[p_] := Module[{d = IntegerDigits[p], tens = 10^Ceiling[Log[10, p]]}, ! PrimeQ[FromDigits[Rest[d]]] && ! PrimeQ[FromDigits[Most[d]]] && ! PrimeQ[10*p + 1] && ! PrimeQ[10*p + 3] && ! PrimeQ[10*p + 7] && ! PrimeQ[10*p + 9] && ! PrimeQ[1*tens + p] && ! PrimeQ[2*tens + p] && ! PrimeQ[3*tens + p] && ! PrimeQ[4*tens + p] && ! PrimeQ[5*tens + p] && ! PrimeQ[6*tens + p] && ! PrimeQ[7*tens + p] && ! PrimeQ[8*tens + p] && ! PrimeQ[9*tens + p]]; t = {}; Do[If[noPrimesQ[p], AppendTo[t, p]], {p, Prime[Range[PrimePi[20000]]]}]; t (* _T. D. Noe_, May 28 2013 *)
%t pbcQ[p_]:=Module[{idp=IntegerDigits[p],lm1,rm1,lft,rt},lm1 = FromDigits[ Most[ idp]];rm1=FromDigits[Rest[idp]];lft= Table[ l*10^Length[idp]+p,{l,9}]; rt=Table[10*p+r,{r,9}];AllTrue[ Flatten[ Join[ {lm1,rm1,lft,rt}]],CompositeQ]]; Select[ Prime[ Range[ 2100]],pbcQ] (* _Harvey P. Dale_, Dec 20 2021 *)
%Y Cf. A050249 (weakly prime numbers: changing any one decimal digit always produces a composite number).
%K nonn,easy,base
%O 1,1
%A _W. Edwin Clark_, May 27 2013