login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array T(j,k) of counts of internal lattice points within all Pythagorean triangles (see comments for array order).
1

%I #16 Apr 27 2019 21:00:53

%S 3,22,17,49,103,43,69,217,244,81,156,305,505,445,131,187,671,709,913,

%T 706,193,190,793,1546,1281,1441,1027,267,295,799,1819,2781,2021,2089,

%U 1408,353,465,1249,1828,3265,4376,2929,2857,1849,451,498,1937,2863,3277,5131,6331,4005,3745,2350,561

%N Array T(j,k) of counts of internal lattice points within all Pythagorean triangles (see comments for array order).

%C The array of counts of internal lattice points within all Pythagorean triangles T(j,k) is arranged so that its first column is the ordered counts of internal lattice points within the k-th primitive Pythagorean triangle (PPT) A225414(k) and the j-th column is j multiples of these PPT side lengths.

%C Let the k-th PPT have integer perpendicular sides a, b then its j-th multiple has area A = j^2*a*b/2 and the count of lattice points intersected by its boundary is B = j*(a+b+1) by the application of Pick's theorem the count of internal lattice points within it is I = (j^2*a*b-j*(a+b+1)+2)/2.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/PicksTheorem.html">MathWorld: Pick's Theorem</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pick%27s_theorem">Pick's theorem</a>

%e Array begins

%e 3, 17, 43, 81, 131, ...

%e 22, 103, 244, 445, ...

%e 49, 217, 505, ...

%e 69, 305, ...

%e 156, ...

%t getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getpptpairs[j_] := (newlist=getpairs[j]; Table[{(newlist[[m]][[1]]^2-newlist[[m]][[2]]^2-1)(2newlist[[m]][[1]]*newlist[[m]][[2]]-1)/2, newlist[[m]][[1]]^2-newlist[[m]][[2]]^2, 2newlist[[m]][[1]]*newlist[[m]][[2]]}, {m, 1, Length[newlist]}]); lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@ IntegerPartitions[#1 +dim-1, {dim}], 1] &, maxHeight], 1]; array[{x_, y_}] := (pptpair=table[[y]]; (x^2*pptpair[[2]]*pptpair[[3]])/2-x(pptpair[[2]]+pptpair[[3]]+1)/2+1); maxterms=20; table=Sort[Flatten[Table[getpptpairs[2p+1], {p, 1, maxterms}], 1]][[1;;maxterms]]; pairs=lexicographicLattice[{2, maxterms}]; Table[array[pairs[[n]]], {n, 1, maxterms(maxterms+1)/2}]

%Y Cf. A126587 (first row), A225414 (first column).

%K nonn,tabl

%O 1,1

%A _Frank M Jackson_, May 23 2013