Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 May 22 2013 10:37:21
%S 15,138,1178,9113,61808,361361,1825607,8065278,31631401,111785599,
%T 360788468,1075829429,2993017696,7832960008,19417916324,45865067963,
%U 103734768130,225619306783,473616394498,962612525277,1899542726132
%N Number of nX4 binary arrays whose sum with another nX4 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order
%C Column 4 of A225982
%H R. H. Hardin, <a href="/A225978/b225978.txt">Table of n, a(n) for n = 1..76</a>
%F Empirical: a(n) = (23/14820309504000)*n^17 + (397/2615348736000)*n^16 + (1429/217945728000)*n^15 + (21083/130767436800)*n^14 + (156407/62270208000)*n^13 + (375707/14370048000)*n^12 + (3136061/16765056000)*n^11 + (21563/22861440)*n^10 + (26402329/6096384000)*n^9 + (423919927/18289152000)*n^8 + (68634593/598752000)*n^7 + (144700261/1437004800)*n^6 + (19312991563/12108096000)*n^5 - (22496273857/4540536000)*n^4 + (97668459683/3027024000)*n^3 - (41460631/700700)*n^2 + (20134601/291720)*n - 23 for n>2
%e Some solutions for n=3
%e ..0..0..0..1....0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..1
%e ..0..1..0..1....0..0..0..0....1..0..0..0....1..1..1..0....0..0..0..1
%e ..1..0..1..1....1..0..0..1....0..0..0..1....0..1..0..0....1..1..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ May 22 2013