Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 05 2018 14:32:13
%S 8,48,252,1178,4722,16361,49811,135672,336189,768900,1642668,3310404,
%T 6343682,11635425,20537903,35044430,58024377,93522432,147134436,
%U 226473606,341742522,506427905,738136947,1059595772,1499832509
%N Number of n X 3 binary arrays whose sum with another n X 3 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.
%H R. H. Hardin, <a href="/A225977/b225977.txt">Table of n, a(n) for n = 1..101</a>
%F Empirical: a(n) = (1/4320)*n^9 + (23/6720)*n^8 + (5/336)*n^7 - (1/288)*n^6 + (659/1440)*n^5 + (443/2880)*n^4 + (80/27)*n^3 - (6203/1008)*n^2 + (2459/140)*n - 6 for n>1.
%F Conjectures from _Colin Barker_, Sep 05 2018: (Start)
%F G.f.: x*(8 - 32*x + 132*x^2 - 142*x^3 + 202*x^4 - 25*x^5 - 165*x^6 + 163*x^7 - 72*x^8 + 16*x^9 - x^10) / (1 - x)^10.
%F a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
%F (End)
%e Some solutions for n=3:
%e ..0..0..1....0..0..0....0..0..0....0..0..1....0..0..1....0..1..1....0..1..1
%e ..1..0..0....0..1..0....1..1..1....1..0..1....0..1..0....0..1..0....0..0..1
%e ..1..1..1....0..1..1....0..1..0....0..0..1....0..0..1....0..1..1....1..0..0
%Y Column 3 of A225982.
%K nonn
%O 1,1
%A _R. H. Hardin_, May 22 2013