|
|
A225974
|
|
Multiplicative persistence with squares of decimal digits: smallest number such that the number of iterations of "multiply digits squared" needed to reach 0 or 1 equals n.
|
|
2
|
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This sequence is probably finite.
The number of times you need to multiply the square of the digits together before reaching 0 or 1 is equals to n.
|
|
LINKS
|
Table of n, a(n) for n=0..6.
|
|
EXAMPLE
|
a(4)= 29 -> 4*81 = 324 -> 9*4*16 = 576 -> 25*49*36 = 44100 -> 0 has persistence 4.
|
|
MATHEMATICA
|
lst = {}; n = 0; Do[While[True, k = n; c = 0; While[k > 9, k = Times @@ IntegerDigits[k]^2; c++]; If[c == l, Break[]]; n++]; AppendTo[lst, n], {l, 0, 7}]; lst
|
|
CROSSREFS
|
Cf. A003001, A031348, A031349.
Sequence in context: A048195 A133634 A174051 * A274046 A014090 A154057
Adjacent sequences: A225971 A225972 A225973 * A225975 A225976 A225977
|
|
KEYWORD
|
nonn,hard,fini,base
|
|
AUTHOR
|
Michel Lagneau, May 22 2013
|
|
STATUS
|
approved
|
|
|
|