login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of conjugacy classes in simply connected Chevalley group E_6(q) as q runs through the prime powers.
1

%I #6 May 22 2013 20:32:44

%S 180,1269,6116,20454,140886,304548,605685,1965462,5262486,17969012,

%T 25736406,49802214,155060070,254728710,402876885,616803846,918054582,

%U 1109465220,2638941366,4871761782,6475396806,11018543046,14135564454,22598655270,42920128086

%N Number of conjugacy classes in simply connected Chevalley group E_6(q) as q runs through the prime powers.

%H Eric M. Schmidt, <a href="/A225932/b225932.txt">Table of n, a(n) for n = 1..1000</a>

%H Frank Luebeck, <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/nrclasses/nrclasses.html">Numbers of Conjugacy Classes in Finite Groups of Lie Type</a>.

%F Let q be the n-th prime power.

%F a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 15q^2 + 21q + 60 if q == 1 (mod 6).

%F a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 6q^2 + 4q + 4 if q == 2 (mod 6).

%F a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 3 if q == 3 (mod 6).

%F a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 14q^2 + 20q + 52 if q == 4 (mod 6).

%F a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 4 if q == 5 (mod 6).

%o (Sage) def A225932(q) : return q^6 + q^5 + 2*q^4 + 2*q^3 + [15*q^2 + 21*q + 60, 6*q^2 + 4*q + 4, 7*q^2 + 5*q + 3, 14*q^2 + 20*q + 52, 7*q^2 + 5*q + 4][q%6-1]

%Y Cf. A188161, A224790, A225928 - A225938.

%K nonn

%O 1,1

%A _Eric M. Schmidt_, May 21 2013