login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX6 binary arrays whose sum with another nX6 binary array containing no more than a single 1 has rows and columns in lexicographically nondecreasing order
1

%I #5 Aug 11 2014 22:45:52

%S 22,304,5052,93428,1706655,28401254,415506534,5301203235,59290115703,

%T 587323294703,5212389996817,41899219805623,308062668217181,

%U 2089563223989402,13172746281602431,77676147517334724,430830309908084671

%N Number of nX6 binary arrays whose sum with another nX6 binary array containing no more than a single 1 has rows and columns in lexicographically nondecreasing order

%C Column 6 of A225900

%H R. H. Hardin, <a href="/A225898/b225898.txt">Table of n, a(n) for n = 1..75</a>

%H R. H. Hardin, <a href="/A225898/a225898.txt">Empirical polynomial of degree 64</a>

%F Empirical polynomial of degree 64 (see link above)

%e Some solutions for n=3

%e ..0..0..1..1..1..1....0..0..0..1..1..1....0..1..1..0..1..1....0..0..0..0..1..1

%e ..0..0..1..1..1..1....0..1..1..0..1..1....1..0..0..0..0..1....0..0..1..0..1..1

%e ..1..1..0..1..0..1....1..0..0..0..0..1....1..0..1..1..1..0....0..1..1..1..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ May 20 2013