login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = max_{2<=k<=(n-2)/2} sum_{d>1: d|n+k, k|n+d}1.
7

%I #21 Nov 25 2014 16:38:14

%S 3,2,2,3,4,1,3,3,4,4,3,2,4,3,4,4,6,2,3,4,4,4,4,2,5,3,3,6,6,4,4,4,6,4,

%T 4,2,4,5,6,5,8,2,3,4,4,6,4,3,6,6,4,6,8,2,5,5,6,4,4,4,6,4,6,8,9,2,4,5,

%U 4,5,6,6,8,4,4,6,8,3,4,6,6,8,6,3,5,4,8,6,10

%N a(n) = max_{2<=k<=(n-2)/2} sum_{d>1: d|n+k, k|n+d}1.

%H Peter J. C. Moses, <a href="/A225867/b225867.txt">Table of n, a(n) for n = 6..10005</a>

%p A225867 := proc(n)

%p local a,k,nd ;

%p a := 0 ;

%p for k from 2 to n/2-1 do

%p nd := 0 ;

%p for d in numtheory[divisors](n+k) minus {1} do

%p if modp(n+d,k) = 0 then

%p nd := nd+1;

%p end if;

%p end do:

%p a := max(a,nd) ;

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Jul 04 2013

%t Table[Max[Map[Count[(n+Rest[Divisors[n+#]])/#,_Integer]&,Range[2,Floor[(n-2)/2]]]],{n,6,105}] (* _Peter J. C. Moses_, Jun 27 2013 *)

%o (PARI) a(n)=my(t); for(k=2,n\2-1, t=max(sumdiv(n+k,d,(n+d)%k==0 && d>1),t)); t \\ _Charles R Greathouse IV_, Nov 25 2014

%K nonn

%O 6,1

%A _Vladimir Shevelev_, May 18 2013

%E Extended from a(14) by _Peter J. C. Moses_, May 18 2013