Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 08 2024 02:33:36
%S 2,6,9,5,2,3,9,2,9,0,2,7,7,4,2,0,1,7,3,1,7,1,8,1,6,4,7,4,8,6,3,2,9,3,
%T 0,2,8,4,0,8,4,9,8,2,5,3,4,3,2,6,6,3,0,9,8,1,5,8,4,3,7,7,2,9,1,8,6,2,
%U 8,3,6,9,8,2,7,6,4,0,8,2,5,3,2,7,3,3,1,2,6,1,8,5,8,3,0,0,4,8,4,4,0,6,0,8,3
%N Decimal expansion of Sum_{n>=1} 1/(n*binomial(4*n,n)).
%D George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 60.
%H Necdet Batir and Anthony Sofo, <a href="http://dx.doi.org/10.1016/j.amc.2013.05.053">On some series involving reciprocals of binomial coefficients</a>, Appl. Math. Comp. 220 (2013) 331-338, Example 7.
%F Equals Integral_{x>0} ((3*x)/((1 + x)*(1 + 3*x + 6*x^2 + 4*x^3 + x^4))) dx.
%F Equals (3*c/(2*c^2+1)) * log((c-1)/(c+1)) + (3*(c-1)/(2*(2*c^2+1))) * sqrt(c/(c+2)) * arctan(2*sqrt(c^2+2*c)/(c^2+2*c-1)) + (3*(c+1)/(2*(2*c^2+1))) * sqrt(c/(c-2)) * arctan(2*sqrt(c^2-2*c)/(c^2-2*c-1)), where c = sqrt(1 + (16/sqrt(3)) * cos(arctan(sqrt(229/27))/3)) (Batir and Sofo, 2013). - _Amiram Eldar_, Dec 07 2024
%e 0.269523929027742017317181647486329302840849825343266309815843772918628369827...
%t (1/4)*HypergeometricPFQ[{1, 1, 4/3, 5/3}, {5/4, 3/2, 7/4}, 27/256] // RealDigits[#, 10, 105]& // First
%Y Cf. A073010, A210453, A378802.
%K nonn,cons,changed
%O 0,1
%A _Jean-François Alcover_, May 17 2013