Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 10 2024 02:43:43
%S 0,2,4,8,7,5,4,4,7,7,0,3,3,7,8,4,2,6,2,5,4,7,2,5,2,9,9,3,5,7,6,1,1,3,
%T 9,7,6,0,9,7,3,6,9,7,1,3,6,6,8,5,3,5,1,1,6,9,9,9,8,5,5,6,3,9,6,9,0,6,
%U 9,3,0,3,2,9,9,9,9,1,0,5,0,6,0,9,2,8,5,8,4,3,3,6,6,5,8,4,2,0,8,8,8
%N Decimal expansion of the logarithm of Glaisher's constant.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135.
%H Jesús Guillera and Jonathan Sondow, <a href="https://doi.org/10.1007/s11139-007-9102-0">Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent</a>, The Ramanujan Journal, Vol. 16, No. 3 (2008), pp. 247-270; <a href="https://arxiv.org/abs/math/0506319">arXiv preprint</a>, arXiv:math/0506319 [math.NT], 2005-2006.
%H Jean-Christophe Pain, <a href="https://arxiv.org/abs/2405.05264">Two integral representations for the logarithm of the Glaisher-Kinkelin constant</a>, arXiv:2405.05264 [math.GM], 2024.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Glaisher-KinkelinConstant.html">Glaisher-Kinkelin Constant</a>.
%F Equals 1/12 - zeta'(-1).
%F Also equals (gamma + log(2*Pi))/12 -zeta'(2)/(2*Pi^2).
%F From _Amiram Eldar_, Apr 15 2021: (Start)
%F Equals lim_{n->oo} (Sum_{k=1..n} k*log(k) - (n^2/2 + n/2 + 1/12)*log(n) + n^2/4).
%F Equals 1/8 + (1/2) * Sum_{n>=0} ((1/(n+1)) * Sum_{k=0..n} (-1)^(k+1) * binomial(n,k) * (k+1)^2 * log(k+1)) (Guillera and Sondow, 2008). (End)
%e 0.248754477033784262547252993576113976097369713668535116999855639690693032999...
%t RealDigits[Log[Glaisher], 10, 100] // First
%o (PARI) 1/12-zeta'(-1) \\ _Charles R Greathouse IV_, Dec 12 2013
%Y Cf. A001620, A073002, A074962, A084448.
%K nonn,cons
%O 1,2
%A _Jean-François Alcover_, May 14 2013