login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite squarefree numbers n such that p(i)-10 divides n+10, where p(i) are the prime factors of n.
3

%I #14 May 17 2013 15:12:25

%S 14,22,35,55,65,77,102,110,143,165,182,221,455,494,665,935,1001,1173,

%T 1430,2717,2795,4505,4526,4862,5957,6479,11526,27521,30485,34661,

%U 35126,45917,49715,52910,53846,81686,90574,106865,113477,118745,139073,140822,147095

%N Composite squarefree numbers n such that p(i)-10 divides n+10, where p(i) are the prime factors of n.

%e Prime factors of 34661 are 11, 23 and 137. We have that (34661+10)/(11-10) = 34671, (34661+10)/(23-10) = 2667 and (34661+10)/(137-10) = 273.

%p with(numtheory); A225710:=proc(i,j) local c, d, n, ok, p, t;

%p for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;

%p for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;

%p if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;

%p if ok=1 then print(n); fi; fi; od; end: A225710(10^9,10);

%t t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 10, p - 10]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* _T. D. Noe_, May 17 2013 *)

%Y Cf. A208728, A225702-A225709, A225711-A225720.

%K nonn

%O 1,1

%A _Paolo P. Lava_, May 13 2013

%E Extended by _T. D. Noe_, May 17 2013