login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of coefficients arising from q-expansion of Integrate[eta[q^4]^8/eta[q^2]^4, q]/q where eta is the Dedekind eta function.
3

%I #11 Jun 01 2013 19:47:52

%S 1,1,1,1,13,1,1,3,1,1,16,1,31,10,1,1,24,4,1,7,1,1,39,1,57,18,1,9,40,1,

%T 1,13,14,1,48,1,1,31,16,1,121,1,54,15,1,28,64,5,1,39,1,1,96

%N Numerators of coefficients arising from q-expansion of Integrate[eta[q^4]^8/eta[q^2]^4, q]/q where eta is the Dedekind eta function.

%C Gosper observes that A225699/A225700 = A008438/(2,4,6,8,10,...) and hence the coefficient of q^k in the q-expansion is 1 iff k is an odd prime (see Example section below).

%C Note that, as usual in the OEIS, the q-expansion has been normalized here to avoid having every other term be zero.

%D R. W. Gosper, Posting to the Math Fun Mailing List, Jun 01 2013

%e q/2 + q^3 + q^5 + q^7 + (13*q^9)/10 + q^11 + q^13 + (3*q^15)/2 + q^17 + q^19 + (16*q^21)/11 + q^23 + (31*q^25)/26 + (10*q^27)/7 + q^29 + q^31 + (24*q^33)/17 + (4*q^35)/3 + q^37 + (7*q^39)/5 + q^41 + q^43 + (39*q^45)/23 + q^47 + (57*q^49)/50 + (18*q^51)/13 + q^53 + (9*q^55)/7 + (40*q^57)/29 + q^59 + q^61 + (13*q^63)/8 + (14*q^65)/11 + q^67 + (48*q^69)/35 + q^71 + q^73 + (31*q^75)/19 + (16*q^77)/13 + q^79 + (121*q^81)/82 + q^83 + (54*q^85)/43 + (15*q^87)/11 + q^89 + (28*q^91)/23 + (64*q^93)/47 + (5*q^95)/4 + q^97 + (39*q^99)/25 + q^101 + q^103 + (96*q^105)/53 + ...

%Y Cf. A225700. See A008438 for eta[q^4]^8/eta[q^2]^4.

%K nonn,frac

%O 0,5

%A _N. J. A. Sloane_, Jun 01 2013