login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225624
Triangle read by rows: T(n,k) is the number of descent sequences of length n with exactly k-1 descents, n>=1, 1<=k<=n.
2
1, 2, 0, 3, 1, 0, 4, 5, 0, 0, 5, 15, 3, 0, 0, 6, 35, 25, 1, 0, 0, 7, 70, 117, 28, 0, 0, 0, 8, 126, 405, 271, 22, 0, 0, 0, 9, 210, 1155, 1631, 483, 13, 0, 0, 0, 10, 330, 2871, 7359, 5126, 711, 5, 0, 0, 0, 11, 495, 6435, 27223, 36526, 13482, 889, 1, 0, 0, 0, 12, 715, 13299, 86919, 199924, 151276, 30906, 962, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
A descent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + desc([d(1), d(2), ..., d(k-1)]) where desc(.) gives the number of descents of its argument, see example.
Row sums are A225588 (number of descent sequences).
First column is C(n,1)=n, second column is C(n+1,4) = A000332(n+1), third column appears to be A095664(n-5) for n>=5.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 1..100, flattened (Rows n = 1..18 from Joerg Arndt)
EXAMPLE
Triangle begins:
01: 1,
02: 2, 0,
03: 3, 1, 0,
04: 4, 5, 0, 0,
05: 5, 15, 3, 0, 0,
06: 6, 35, 25, 1, 0, 0,
07: 7, 70, 117, 28, 0, 0, 0,
08: 8, 126, 405, 271, 22, 0, 0, 0,
09: 9, 210, 1155, 1631, 483, 13, 0, 0, 0,
10: 10, 330, 2871, 7359, 5126, 711, 5, 0, 0, 0,
11: 11, 495, 6435, 27223, 36526, 13482, 889, 1, 0, 0, 0,
12: 12, 715, 13299, 86919, 199924, 151276, 30906, 962, 0, 0, 0, 0,
13: 13, 1001, 25740, 247508, 903511, 1216203, 546001, 63462, 903, 0, 0, 0, 0,
...
The number of descents for the A225588(5)=23 descent sequences of length 5 are (dots for zeros):
.#: descent seq. no. of descents
01: [ . . . . . ] 0
02: [ . . . . 1 ] 0
03: [ . . . 1 . ] 1
04: [ . . . 1 1 ] 0
05: [ . . 1 . . ] 1
06: [ . . 1 . 1 ] 1
07: [ . . 1 . 2 ] 1
08: [ . . 1 1 . ] 1
09: [ . . 1 1 1 ] 0
10: [ . 1 . . . ] 1
11: [ . 1 . . 1 ] 1
12: [ . 1 . . 2 ] 1
13: [ . 1 . 1 . ] 2
14: [ . 1 . 1 1 ] 1
15: [ . 1 . 1 2 ] 1
16: [ . 1 . 2 . ] 2
17: [ . 1 . 2 1 ] 2
18: [ . 1 . 2 2 ] 1
19: [ . 1 1 . . ] 1
20: [ . 1 1 . 1 ] 1
21: [ . 1 1 . 2 ] 1
22: [ . 1 1 1 . ] 1
23: [ . 1 1 1 1 ] 0
There are 5 sequences with 0 descents, 15 with 1 descents, 3 with 2 descents, and 0 for 3 or 5 descents. Therefore row 5 is [5, 15, 3, 0, 0].
MAPLE
b:= proc(n, i, t) option remember; local j; if n<1 then [0$t, 1]
else []; for j from 0 to t+1 do zip((x, y)->x+y, %,
b(n-1, j, t+`if`(j<i, 1, 0)), 0) od; % fi
end:
T:= proc(n) local l; l:= b(n-1, 0, 0): l[], 0$(n-nops(l)) end:
seq(T(n), n=1..13); # Alois P. Heinz, May 18 2013
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = Module[{j, pc}, If[n<1, Append[Array[0 &, t], 1], pc = {}; For[j = 0, j <= t+1, j++, pc = Plus @@ PadRight[ {pc, b[n-1, j, t+If[j<i, 1, 0]]}]]; pc]]; T[n_] := Module[{l}, l = b[n-1, 0, 0]; Join[l, Array[0&, n-Length[l]]]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 27 2014, after Alois P. Heinz *)
PROG
(Sage) # After Alois P. Heinz.
@CachedFunction
def b(n, i, t, N):
B = [0 for x in range(N)]
if n < 1: B[t] = 1; return B
for j in (0..t+1):
B = map(operator.add, B, b(n-1, j, t+int(j<i), N))
return B
def T(n): return b(n-1, 0, 0, n)
for n in (1..9): T(n) # Peter Luschny, May 20 2013; updated May 21 2013
CROSSREFS
Sequence in context: A284871 A202064 A144955 * A168020 A321878 A225084
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt, May 11 2013
STATUS
approved