login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, k!*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
5

%I #21 Jul 12 2017 05:02:54

%S 1,2,3,4,21,18,8,117,270,162,16,609,2862,4212,1944,32,3093,26550,

%T 72090,77760,29160,64,15561,230958,1031940,1953720,1662120,524880,128,

%U 77997,1941030,13429962,39735360,57561840,40415760,11022480,256,390369,15996222,165198852

%N Triangle read by rows, k!*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

%C The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program).

%H Vincenzo Librandi, <a href="/A225472/b225472.txt">Rows n = 0..50, flattened</a>

%H P. Bala, <a href="/A143395/a143395.pdf">A 3 parameter family of generalized Stirling numbers</a>.

%H Peter Luschny, <a href="http://www.luschny.de/math/euler/GeneralizedEulerianPolynomials.html">Generalized Eulerian polynomials.</a>

%H Peter Luschny, <a href="http://www.luschny.de/math/euler/StirlingFrobeniusNumbers.html">The Stirling-Frobenius numbers.</a>

%F For a recurrence see the Maple program.

%F T(n, 0) ~ A000079; T(n, 1) ~ A005057; T(n, n) ~ A032031.

%F From _Wolfdieter Lang_, Apr 10 2017: (Start)

%F E.g.f. for sequence of column k: exp(2*x)*(exp(3*x) - 1)^k, k >= 0. From the Sheffer triangle S2[3,2] = A225466 with column k multiplied with k!.

%F O.g.f. for sequence of column k is 3^k*k!*x^k/Product_{j=0..k} (1 - (2+3*j)*x), k >= 0.

%F T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k, j)*(2+3*j)^n, 0 <= k <= n.

%F Three term recurrence (see the Maple program): T(n, k) = 0 if n < k , T(n, -1) = 0, T(0,0) = 1, T(n, k) = 3*k*T(n-1, k-1) + (2 + 3*k)*T(n-1, k) for n >= 1, k=0..n.

%F For the column scaled triangle (with diagonal 1s) see A225468, and the Bala link with (a,b,c) = (3,0,2), where Sheffer triangles are called exponential Riordan triangles.

%F (End)

%F The e.g.f. of the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k is exp(2*z)/(1 - x*(exp(3*z) - 1)). - _Wolfdieter Lang_, Jul 12 2017

%e [n\k][0, 1, 2, 3, 4, 5, 6 ]

%e [0] 1,

%e [1] 2, 3,

%e [2] 4, 21, 18,

%e [3] 8, 117, 270, 162,

%e [4] 16, 609, 2862, 4212, 1944,

%e [5] 32, 3093, 26550, 72090, 77760, 29160,

%e [6] 64, 15561, 230958, 1031940, 1953720, 1662120, 524880.

%p SF_SO := proc(n, k, m) option remember;

%p if n = 0 and k = 0 then return(1) fi;

%p if k > n or k < 0 then return(0) fi;

%p m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end:

%p seq(print(seq(SF_SO(n, k, 3), k=0..n)), n = 0..5);

%t EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 29 2013, translated from Sage *)

%o (Sage)

%o @CachedFunction

%o def EulerianNumber(n, k, m) :

%o if n == 0: return 1 if k == 0 else 0

%o return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m)

%o def SF_SO(n, k, m):

%o return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))

%o for n in (0..6): [SF_SO(n, k, 3) for k in (0..n)]

%Y Cf. A131689 (m=1), A145901 (m=2), A225473 (m=4).

%Y Cf. A225466, A225468, columns: A000079, 3*A016127, 3^2*2!*A016297, 3^3*3!*A025999.

%K nonn,easy,tabl

%O 0,2

%A _Peter Luschny_, May 17 2013