login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

10-adic integer x such that x^9 = -3.
1

%I #12 Aug 16 2019 14:03:39

%S 7,1,5,1,3,4,3,5,3,5,4,4,7,6,3,4,4,6,3,5,0,2,0,0,2,4,3,9,2,4,1,1,0,6,

%T 2,2,8,0,9,6,8,9,1,6,3,8,5,7,2,4,3,2,6,1,2,1,1,2,6,5,7,1,9,9,1,3,3,0,

%U 3,5,0,5,4,4,4,3,2,9,3,4,8,2,6,3,5,3,6,6,5,3,6,9,0,2,2,8,3,7,2,8

%N 10-adic integer x such that x^9 = -3.

%C This is the 10's complement of A225456.

%H Seiichi Manyama, <a href="/A225459/b225459.txt">Table of n, a(n) for n = 0..10000</a>

%e 7^9 == -3 (mod 10).

%e 17^9 == -3 (mod 10^2).

%e 517^9 == -3 (mod 10^3).

%e 1517^9 == -3 (mod 10^4).

%e 31517^9 == -3 (mod 10^5).

%e 431517^9 == -3 (mod 10^6).

%o (PARI) n=0;for(i=1,100,m=(10^i-3);for(x=0,9,if(((n+(x*10^(i-1)))^9)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))

%o (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-3+O(2^N))^(1/9), 2^N), Mod((-3+O(5^N))^(1/9), 5^N)))), N) \\ _Seiichi Manyama_, Aug 07 2019

%Y Cf. A225456.

%K nonn,base

%O 0,1

%A _Aswini Vaidyanathan_, May 11 2013