login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that there is a prime q satisfying 3*p^2 - q^2 = 2.
1

%I #36 May 14 2013 12:59:01

%S 3,11,41,2131,110771,15558008491

%N Primes p such that there is a prime q satisfying 3*p^2 - q^2 = 2.

%C Primes q: 5, 19, 71, 3691, 191861,...

%C (q - p)/2: 1, 4, 15, 780, 40545,...

%C a(7) > 2.8016852867294*10^4857. - _Zak Seidov_, May 09 2013

%C Probably finite.

%C This is a form of Pell's equation with the requirement that solutions be prime. - _T. D. Noe_, May 14 2013

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/PellEquation.html">MathWorld: Pell Equation</a>

%e 11 is prime and sqrt(3*11^2 - 2) = sqrt(361) = 19 is prime, so 11 is in the sequence.

%t nn = 1000; ta = LinearRecurrence[{4, -1}, {1, 3}, nn]; tb = LinearRecurrence[{4, -1}, {1, 5}, nn]; sol = Select[Range[nn], PrimeQ[ta[[#]]] && PrimeQ[tb[[#]]] &]; ta[[sol]] (* _T. D. Noe_, May 14 2013 *)

%o (PARI) v=[1,1]; for(i=1,1e4,v=[v[2],4*v[2]-v[1]]; if(ispseudoprime(v[2]) && ispseudoprime(sqrtint(3*v[2]^2-2)), print1(v[2]", "))) \\ _Charles R Greathouse IV_, May 13 2013

%o (PFGW)

%o ABC2 Linear(3,11,41,153,$a) & Linear(5,19,71,265,$a)

%o a: from 3 to 20000 // _Charles R Greathouse IV_, May 13 2013

%K nonn

%O 1,1

%A _Irina Gerasimova_, May 07 2013

%E a(4) from R. J. Mathar, May 07 2013

%E a(6) from Charles R Greathouse IV, May 07 2013

%E a(5) from Zak Seidov, May 09 2013