login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 8Xn -1,1 arrays such that the sum over i=1..8,j=1..n of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute n-across galley oarsmen left-right at 8 fore-aft positions so that there are no turning moments on the ship)
1

%I #4 May 05 2013 14:42:39

%S 8,77,410,1525,4508,11291,25056,50659,95130,168289,283338,457627,

%T 713374,1078615,1587974,2283803,3217102,4448769,6050622,8106883,

%U 10715232,13988475,18055740,23064277,29180742,36593245,45512628,56174753,68841880

%N Number of 8Xn -1,1 arrays such that the sum over i=1..8,j=1..n of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute n-across galley oarsmen left-right at 8 fore-aft positions so that there are no turning moments on the ship)

%C Row 8 of A225345

%H R. H. Hardin, <a href="/A225348/b225348.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +a(n-2) -a(n-5) -a(n-7) -a(n-8) +a(n-10) +a(n-11) +2*a(n-12) -2*a(n-16) -a(n-17) -a(n-18) +a(n-20) +a(n-21) +a(n-23) -a(n-26) -a(n-27) +a(n-28)

%e Some solutions for n=4

%e .-1..1..1..1...-1..1..1..1...-1..1..1..1...-1..1..1..1...-1.-1..1..1

%e .-1..1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1

%e .-1.-1..1..1...-1.-1..1..1...-1..1..1..1...-1..1..1..1...-1..1..1..1

%e .-1.-1.-1.-1...-1.-1.-1.-1...-1.-1.-1..1...-1.-1.-1.-1...-1.-1.-1..1

%e .-1.-1.-1.-1...-1.-1.-1..1...-1.-1..1..1...-1.-1.-1..1....1..1..1..1

%e .-1..1..1..1...-1.-1.-1..1...-1..1..1..1...-1.-1..1..1...-1.-1..1..1

%e .-1.-1.-1..1...-1.-1..1..1....1..1..1..1...-1.-1.-1..1...-1.-1.-1..1

%e ..1..1..1..1....1..1..1..1...-1.-1.-1.-1....1..1..1..1...-1.-1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ May 05 2013