Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Jun 17 2024 03:50:16
%S 1,1,3,6,13,24,48,86,160,282,499,856,1471,2466,4124,6788,11110,17965,
%T 28890,45995,72819,114354,178577,276952,427279,655199,999773,1517388,
%U 2292377,3446462,5159352,7689517,11414606,16875813,24856366,36474188,53334376,77717219,112874158,163403202
%N Number of 9-line partitions of n (i.e., planar partitions of n with at most 9 lines).
%C Number of partitions of n where there are k sorts of parts k for k<=8 and nine sorts of all other parts. - _Joerg Arndt_, Mar 15 2014
%C In general, "number of r-line partitions" is asymptotic to (Product_{j=1..r-1} j!) * Pi^(r*(r-1)/2) * r^((r^2 + 1)/4) * exp(Pi*sqrt(2*n*r/3)) / (2^((r*(r+2)+5)/4) * 3^((r^2 + 1)/4) * n^((r^2 + 3)/4)). - _Vaclav Kotesovec_, Oct 28 2015
%H Vincenzo Librandi and Joerg Arndt and Alois P. Heinz, <a href="/A225199/b225199.txt">Table of n, a(n) for n = 0..1000</a>
%H Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, <a href="https://arxiv.org/abs/2004.08901">Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions</a>, arXiv:2004.08901 [math.CO], 2020, p. 28.
%H P. A. MacMahon, <a href="https://archive.org/stream/messengerofmathe52cambuoft#page/112/mode/2up">The connexion between the sum of the squares of the divisors and the number of partitions of a given number</a>, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - _N. J. A. Sloane_, May 21 2014
%F G.f.: 1/Product_{n>=1}(1-x^n)^min(n,9). - _Joerg Arndt_, Mar 15 2014
%F a(n) ~ 2101805306799541875 * sqrt(3) * Pi^36 * exp(Pi*sqrt(6*n)) / (8*n^21). [The convergence is very slow, numerical verification needs more than 1000000 terms.] - _Vaclav Kotesovec_, Oct 28 2015
%p b:= proc(n,i) option remember; `if`(n=0, 1,
%p `if`(i<1, 0, add(binomial(min(i, 9)+j-1, j)*
%p b(n-i*j, i-1), j=0..n/i)))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Mar 15 2014
%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 9]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *)
%t m:=50; r:=9; CoefficientList[Series[Product[(1-x^k)^(r-k),{k,1,r-1}]/( Product[(1-x^j), {j,1,m}])^r, {x,0,m}],x] (* _G. C. Greubel_, Dec 10 2018 *)
%o (PARI) x='x+O('x^66); r=9; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
%o (Magma) m:=50; r:=9; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // _G. C. Greubel_, Dec 10 2018
%o (Sage)
%o m=50; r=9
%o R = PowerSeriesRing(ZZ, 'x')
%o x = R.gen().O(m)
%o s = (prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^r)
%o s.coefficients() # _G. C. Greubel_, Dec 10 2018
%Y A row of the array in A242641.
%Y Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).
%K nonn
%O 0,3
%A _Joerg Arndt_, May 01 2013