%I #5 May 01 2013 12:23:54
%S 1,7,399,1475103,22572192792639,5844003553148435725257076863,
%T 428857285713570950220841681681938481172663051541516755199
%N Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 8/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
%C Numerators of the sequence s(n) of the sum resp. product of fractions f(n) is A165426(n+2), hence sum(A165426(i+1)/A225160(i),i=1..n) = product(A165426(i+1)/A225160(i),i=1..n) = A165426(n+2)/a(n) = A167182(n+2)/a(n).
%F a(n) = 8^(2^(n-1))*b(n) where b(n)=b(n-1)-b(n-1)^2 with b(1)=1/8.
%e f(n) = 8, 8/7, 64/57, 4096/3697, ...
%e 8 + 8/7 = 8 * 8/7 = 64/7; 8 + 8/7 + 64/57 = 8 * 8/7 * 64/57 = 4096/399; ...
%e s(n) = 1/b(n) = 8, 64/7, 4096/399, ...
%p b:=proc(n) option remember; b(n-1)-b(n-1)^2; end:
%p b(1):=1/8;
%p a:=n->8^(2^(n-1))*b(n);
%p seq(a(i),i=1..8);
%Y Cf. A076628, A165426, A167182, A225160.
%K nonn
%O 1,2
%A _Martin Renner_, Apr 30 2013