login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes from merging of 10 successive digits in the decimal expansion of Pi^2.
2

%I #26 Dec 09 2014 03:34:54

%S 5913774023,9137740231,7402314407,4023144077,8735261779,4830981887,

%T 8309818873,3307626667,8853659527,6595276357,5952763577,7635775283,

%U 3577528379,3792268331,9085975607,9264752779,6698082641,8968771057,1057327889,5972589229,4137067777

%N Primes from merging of 10 successive digits in the decimal expansion of Pi^2.

%C Leading zeros are not permitted, so each prime is 10 digits in length. The terms are listed in the order in which they occur.

%H Bruno Berselli, <a href="/A225036/b225036.txt">Table of n, a(n) for n = 1..1000</a>

%H Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap75.html">Pi^2 to 10000 digits</a>

%t With[{len = 10}, FromDigits /@ Select[Partition[RealDigits[Pi^2, 10, 600][[1]], len, 1], PrimeQ[FromDigits[#]] && IntegerLength[FromDigits[#]] == len &]]

%Y Cf. A002388, A104925 - A104932, A198174.

%Y Cf. A104933.

%K nonn,base

%O 1,1

%A _Bruno Berselli_, Apr 25 2013