Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Dec 05 2019 08:20:06
%S 81,253,253,759,1935,759,2653,12641,12641,2653,9273,113261,117959,
%T 113261,9273,34545,979821,1930229,1930229,979821,34545,130067,9045373,
%U 23865033,68599847,23865033,9045373,130067,502563,82894903,356942157,1695172731
%N T(n,k) is the number of (n+1) X (k+1) 0..2 matrices with each 2 X 2 permanent equal.
%C Table starts
%C ......81.........253............759..............2653.................9273
%C .....253........1935..........12641............113261...............979821
%C .....759.......12641.........117959...........1930229.............23865033
%C ....2653......113261........1930229..........68599847...........1695172731
%C ....9273......979821.......23865033........1695172731..........61256508583
%C ...34545.....9045373......356942157.......52562324371........3420719145421
%C ..130067....82894903.....4807268289.....1457105103421......144661440731701
%C ..502563...768456167....69047521033....43215008345605.....7310039035972089
%C .1957855..7112825923...955759546369..1240053913896303...329657881472577779
%C .7707477.65968698193.13524243825173.36294561965670221.15990423886532132411
%H R. H. Hardin, <a href="/A225027/b225027.txt">Table of n, a(n) for n = 1..264</a>
%F Empirical: linear recurrences for columns k=1..4 are of order 12,30,36,87.
%e Some solutions for n=2 k=4
%e ..2..2..1..0..2....2..0..2..0..2....0..2..0..0..0....1..1..0..2..2
%e ..0..0..0..0..2....2..0..2..0..2....0..2..0..0..1....0..0..0..0..0
%e ..2..0..2..0..1....1..0..0..0..2....0..0..0..0..0....1..2..0..2..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Apr 24 2013