Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 27 2023 22:11:46
%S 1,1,7,1,13,11,19,23,1,13,1,19,7,23,17,11,29,7,1,59,61,31,67,37,41,77,
%T 79,89,17,83,91,13,53,89,103,23,109,13,31,67,13,137,29,149,151,29,7,1,
%U 29,79,151,19,13,119,127,167,49,43,211,191,199,97,187,17,83
%N Odd part of digit sum of 5^n divided by maximal possible power of 5.
%C Does the sequence contain every prime greater than 5?
%H Alois P. Heinz, <a href="/A225017/b225017.txt">Table of n, a(n) for n = 0..10000</a> (terms n = 0..999 from Peter J. C. Moses)
%F a(n) = A132740(A055566(n)). - _Michel Marcus_, Dec 10 2018
%p a:= proc(n) local m, r; m, r:= 0, 5^n;
%p while r>0 do m:= m+irem(r, 10, 'r') od;
%p while irem(m, 2, 'r')=0 do m:=r od;
%p while irem(m, 5, 'r')=0 do m:=r od; m
%p end:
%p seq(a(n), n=0..80); # _Alois P. Heinz_, Apr 24 2013
%t Map[#/(2^IntegerExponent[#,2] 5^IntegerExponent[#,5])&[Total[ IntegerDigits[5^#]]]&,Range[0,99]] (* _Peter J. C. Moses_, Apr 24 2013 *)
%o (PARI) a(n) = my(x = sumdigits(5^n)); x/5^valuation(x, 5) >> valuation(x, 2); \\ _Michel Marcus_, Dec 10 2018
%Y Cf. A055566, A132740.
%K nonn,base
%O 0,3
%A _Vladimir Shevelev_, Apr 24 2013