%I #4 Apr 23 2013 21:56:49
%S 8,64,372,1716,6672,22716,69498,194634,505912,1233584,2845492,6251596,
%T 13154948,26635774,52097267,98759971,181971248,326703424,572756312,
%U 982365976,1651162688,2723729944,4415408372,7042481236,11063492816
%N Number of 7Xn 0..1 arrays with rows unimodal and columns nondecreasing
%C Row 7 of A225010
%H R. H. Hardin, <a href="/A225014/b225014.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/87178291200)*n^14 + (1/958003200)*n^13 + (43/958003200)*n^12 + (103/87091200)*n^11 + (1847/87091200)*n^10 + (7891/29030400)*n^9 + (1560493/609638400)*n^8 + (222427/12441600)*n^7 + (2023297/21772800)*n^6 + (1926401/5443200)*n^5 + (29332549/29937600)*n^4 + (1353853/739200)*n^3 + (183490757/75675600)*n^2 + (363/280)*n + 1
%e Some solutions for n=3
%e ..1..1..0....0..0..1....0..1..0....1..0..0....0..0..0....0..0..0....0..0..0
%e ..1..1..0....0..0..1....1..1..0....1..0..0....0..1..0....0..0..0....0..1..0
%e ..1..1..0....0..0..1....1..1..0....1..1..0....1..1..0....0..0..0....0..1..0
%e ..1..1..0....0..0..1....1..1..0....1..1..0....1..1..0....0..0..1....1..1..0
%e ..1..1..0....0..0..1....1..1..1....1..1..0....1..1..0....0..0..1....1..1..0
%e ..1..1..0....0..1..1....1..1..1....1..1..1....1..1..1....0..1..1....1..1..0
%e ..1..1..0....0..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 23 2013