login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225011
Number of 4 X n 0..1 arrays with rows unimodal and columns nondecreasing.
2
5, 25, 95, 295, 791, 1897, 4166, 8518, 16414, 30086, 52834, 89402, 146446, 233108, 361711, 548591, 815083, 1188679, 1704377, 2406241, 3349193, 4601059, 6244892, 8381596, 11132876, 14644540, 19090180, 24675260, 31641640, 40272566, 50898157
OFFSET
1,1
COMMENTS
Row 4 of A225010.
Apparently also column 5 of A071920. - R. J. Mathar, May 17 2014
LINKS
FORMULA
Empirical: a(n) = (1/40320)*n^8 + (1/1440)*n^7 + (3/320)*n^6 + (5/72)*n^5 + (629/1920)*n^4 + (1279/1440)*n^3 + (16763/10080)*n^2 + (25/24)*n + 1 = 1 + n* (n+1) *(n^6 + 27*n^5 + 351*n^4 + 2449*n^3 + 10760*n^2 + 25052*n + 42000)/40320.
Empirical: G.f.: -x*(x^4 - 5*x^3 + 10*x^2 - 10*x + 5) *(x^4 - 3*x^3 + 4*x^2 - 2*x + 1) / (x-1)^9. - R. J. Mathar, May 17 2014
EXAMPLE
Some solutions for n=3
..0..1..0....0..0..0....0..0..1....0..0..0....1..0..0....1..0..0....0..0..1
..0..1..1....0..1..0....0..1..1....0..0..0....1..0..0....1..0..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..0....1..1..0....1..0..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..1....1..1..0....1..1..1....0..1..1
CROSSREFS
Sequence in context: A147177 A057255 A134140 * A228457 A213293 A203184
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 23 2013
STATUS
approved