The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224968 Number of (n+1)X2 0..3 matrices with each 2X2 permanent equal 1

%I #4 Apr 21 2013 17:53:32

%S 256,912,3067,13654,59330,294349,1450678,7519806,38907153,204788176,

%T 1077280478,5698807413,30141225914,159706380100,846175230733,

%U 4485916253958,23781297237114,126096070580625,668599352875654

%N Number of (n+1)X2 0..3 matrices with each 2X2 permanent equal

%C Column 1 of A224975

%H R. H. Hardin, <a href="/A224968/b224968.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 13*a(n-1) -3*a(n-2) -613*a(n-3) +1718*a(n-4) +12657*a(n-5) -55122*a(n-6) -147106*a(n-7) +927356*a(n-8) +988051*a(n-9) -10188709*a(n-10) -2715501*a(n-11) +79796620*a(n-12) -16186868*a(n-13) -466507035*a(n-14) +234403773*a(n-15) +2091286033*a(n-16) -1465021925*a(n-17) -7303254924*a(n-18) +6066214910*a(n-19) +20033857553*a(n-20) -18248086501*a(n-21) -43268355305*a(n-22) +41186341769*a(n-23) +73346534941*a(n-24) -70446516989*a(n-25) -96727442226*a(n-26) +91073964616*a(n-27) +97698501925*a(n-28) -87874737640*a(n-29) -73745632142*a(n-30) +61836998624*a(n-31) +40079463299*a(n-32) -30605244390*a(n-33) -14815375438*a(n-34) +10076694568*a(n-35) +3401067964*a(n-36) -2019055368*a(n-37) -412583016*a(n-38) +209714400*a(n-39) +17956512*a(n-40) -7620480*a(n-41)

%e Some solutions for n=2

%e ..3..0....0..0....1..0....0..1....2..1....3..1....1..0....1..1....2..0....1..3

%e ..0..0....0..0....0..0....0..1....0..0....1..0....3..0....0..3....0..2....2..0

%e ..3..1....1..2....1..0....0..2....3..2....3..1....0..0....1..1....2..1....1..3

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 21 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 16:51 EDT 2024. Contains 375044 sequences. (Running on oeis4.)