login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that a positive number m <= n exists such that n-m, n+m, and n*m are triangular numbers.
2

%I #18 Jun 08 2021 18:31:25

%S 19,171,271,1428,2178,3781,4053,9303,19459,37980,51238,52669,71316,

%T 97083,127014,147978,188074,411675,733591,1018171,1620010,1701078,

%U 1753416,2159496,2642781,4542678,5244753,7337736,10217611,12251265,16212831,17100132,35839545,43400544

%N Numbers n such that a positive number m <= n exists such that n-m, n+m, and n*m are triangular numbers.

%C Sequence of corresponding m's begins: 9, 105, 135, 525, 2100, 1890, 225, 3417, 14994, 23445, 15192, 26334, 19635, 40467, 1764, 142725, 171054, 382755, 366795, 998865, 8100, ...

%C Conjectures:

%C 1. The sequence is infinite.

%C 2. There is only one m for each n (this is true for n < 2^26).

%e The following three are triangular numbers:

%e 271-135 = 136,

%e 271+135 = 406,

%e 271*135 = 36585.

%e So 271 is in the sequence.

%t pnmQ[n_]:=Length[Select[Table[{n-m,n+m,n m},{m,n}],AllTrue[ Sqrt[ 8#+1],OddQ]&]]>0; Select[Range[20000],pnmQ] (* The program generates the first nine terms of the sequence. To generate more, increase the Range constant, but the program may take a long time to run. *) (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 08 2021 *)

%o (Java)

%o public class A224935 {

%o public static long sr0 = 1;

%o public static boolean[] isTriang = new boolean[5 << 25];

%o public static boolean isTriangular(long a) {

%o long b, s, sr = sr0;

%o while (a < sr*(sr+1)/2) sr>>=1;

%o b = sr>>1;

%o while (b!=0) {

%o s = sr+b;

%o if (a >= s*(s+1)/2) sr = s;

%o b>>=1;

%o }

%o if (a == sr*(sr+1)/2) return true;

%o return false;

%o }

%o public static void main (String[] args) {

%o for (int i=0; i*(i+1) < 5 << 26; ++i) isTriang[i*(i+1)/2] = true;

%o for (long a = 0; a < 5 << 24; ++a) {

%o long s = 1L << 30, tn = 0, count = 0, lastTn = 0;

%o while (a*a < s*(s+1)/2) s>>=1;

%o sr0 = s;

%o for (long i = 1; tn < a; ++i) {

%o long b = a - tn;

%o if (isTriang[(int)(a*2-tn)])

%o if (isTriangular(a*(a-tn))) { ++count; lastTn = tn; }

%o tn += i;

%o }

%o if (count>0) System.out.printf("\n%d %d %d ", a, a-lastTn, count);

%o if ((a & 0x3fff)==0) System.out.printf(".");

%o }

%o }

%o }

%Y Cf. A000217, A224954.

%K nonn

%O 1,1

%A _Alex Ratushnyak_, Apr 20 2013