login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of f(x^29, x^31) - x^3 * f(x^11, x^49) in powers of x where f() is a Ramanujan theta function.
1

%I #22 Mar 12 2021 22:24:46

%S 1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,

%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1

%N Expansion of f(x^29, x^31) - x^3 * f(x^11, x^49) in powers of x where f() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^17, b = x^3.

%H G. C. Greubel, <a href="/A224877/b224877.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>

%F Expansion of f(-x^3, -x^7) * f(x^7, x^13) / f(-x^10) = f(-x^10) * f(-x^6, -x^14) / f(x^3, x^17) in powers of x where f() is a Ramanujan theta function.

%F Euler transform of period 40 sequence [ 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, ...].

%F G.f.: Sum_{k in Z} x^(k * (30*k + 10)) * (x^(-9*k) - x^(9*k + 3)).

%F a(7*n + 2) = a(7*n + 4) = a(7*n + 5) = a(11*n + 2) = a(11*n + 4) = a(11*n + 5) = a(11*n + 6) = a(11*n + 10) = 0.

%e G.f. = 1 - x^3 - x^14 + x^29 + x^31 - x^52 - x^85 + x^118 + x^122 - x^161 - x^216 + ...

%e G.f. = q - q^361 - q^1681 + q^3481 + q^3721 - q^6241 - q^10201 + q^14161 + q^14641 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^10] QPochhammer[ x^7, x^10] QPochhammer[ -x^7, x^20] QPochhammer[ -x^13, x^20] QPochhammer[ x^20], {x, 0, n}];

%o (PARI) {a(n) = local(m); if( n<0 || !issquare( 120*n + 1, &m), 0, if( m%20 > 9, m = -m); if( m%20 != 1, 0, 1 - (m\20)%3))};

%K sign

%O 0,1

%A _Michael Somos_, Jul 23 2013